Quantcast
Channel: 100% Solutions: robotics
Viewing all articles
Browse latest Browse all 3882

Synthetic biology pulls CO2 out of the atmosphere

$
0
0

Volume 94 Issue 46 | p. 7 | News of The WeekIssue Date: November 21, 2016 | Web Date: November 17, 2016A suite of enzymes borrowed from humans, plants, and other life-forms can turn the greenhouse gas into industrial building block chemicalsDepartment: Science & Technology News Channels: Biological SCENE, Environmental SCENEKeywords: synthetic biology, biology, mycotoxin, food, toxicology, agriculture, fungus Although plants have been turning atmospheric carbon dioxide into useful carbon compounds for millions of years, the enzyme used to do this transformation, called rubisco, is both slow and fickle—it fixes oxygen instead of CO2 about 20% of the time. So a team of researchers led by Tobias J. Erb at the Max Planck Institute for Terrestrial Microbiology decided to make a synthetic biology system that fixes CO2 more efficiently than plants. They started with a CO2-fixing enzyme from the pink proteo­bacterium named Methylobacterium extorquens. The enzyme, called crotonyl-CoA carboxylase/reductase, is about 20 times as fast at fixing CO2 as rubisco in plants. Next the researchers selected a motley crew of 16 additional enzymes from nine other life-forms—including humans, plants, and microorganisms—to run the world’s first CO2-fixing cycle in a test tube (Science 2016, DOI: 10.1126/science.aah5237). The final output of the newly crafted cycle, named CETCH, is the two-carbon glyoxylate, which could then be converted to industrial products, such as biofuels or pharmaceuticals. Increasing CO2 concentration in the atmosphere is a problem, Erb says. “But at the same time, it is also a carbon source from which we can make useful compounds.” The energy-efficient CO2-fixing pathway is a breakthrough for synthetic biology, and it extends “the capabilities for recapturing atmospheric CO2 for use as a carbon feedstock,” say Fuyu Gong and Yin Li at the Chinese Academy of Sciences in a commentary on the new study (Science 2016, DOI: 10.1126/science.aal1559). However, the next step—transplanting the system into an organism and getting the various enzymes to function optimally—will be a huge challenge, they add. Chemical & Engineering News ISSN 0009-2347 Copyright © American Chemical Society

Viewing all articles
Browse latest Browse all 3882

Trending Articles